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Abstract

The problem of system identification from a time series of measurements is solved by using non-
parametric additive models. Having only few structural information about the system, a non-parametric
approach may be more appropriate than a parametric one for which detailed prior knowledge is needed.
Based on non-parametric regression, the functions in the additive models are estimated by a penalized least-
squares approach using backfitting. The optimal smoothing parameters are determined via generalized
cross-validation, making this approach completely adaptive to the data. The procedure is applied to
identify the non-linear restoring force of vibrationally excited helical wire rope isolators.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

A non-parametric method for non-linear dynamical system identification from time series of
measurements is proposed for the case that only few structural information about the system is
known. In contrast to the widespread approach of fitting parameters in given model equations to
the data, e.g., NARMAX models [1,2], in this approach the functions involved in the equations
are estimated themselves. The basic requirement is that the system can be described by an additive
model. Additive models have been successfully applied to various data modelling problems and
can be regarded as a generalization of linear regression to non-linear dependencies [3–5]. In this
article these statistical concepts will be applied to the non-parametric identification of non-linear
oscillating systems given by ordinary differential equations. It is shown that non-linearities
involved in these models can be estimated from time series of observations without the
requirement of explicitly providing their analytic form. As an example application, the modelling
of a vibrationally excited helical wire rope isolator reveals that the change of the non-linear
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behavior of the restoring forces under changing excitation parameters can be modelled accurately
within this concept.

Additive models are mapping p different input variables x1;y; xp additively to a single output
variable y: In the presence of an observational error e which is usually assumed to be normally
distributed and independent of x1;y;xp; the model equations are given by

y ¼ f1ðx1Þ þ?þ fpðxpÞ þ e: ð1Þ

The unknown functions f1ðx1Þ;y; fpðxpÞ have to be estimated from observations of y given at
some design points ðx1;y;xpÞ: In the following, a method is presented to estimate these functions
efficiently and data-adaptively. The basic idea of this procedure is to utilize the additivity in order
to built an iterative algorithm. This algorithm solves a one-dimensional problem in every iteration
step by smoothing. The reduction to one variable during the iteration process therefore does not
suffer from the so-called curse of dimensionality, which denotes the effect that high-dimensional
spaces are filled sparsely [6].

The smoothing parameters of each function can be efficiently selected in additive models. This
parameter indicates how rough the estimated function should remain. The optimal smoothing
parameter is balancing the bias to the variance of the estimated curve, or more exactly, minimizing
the mean-squared error. It can be estimated by generalized cross-validation [7]. Having once
introduced additive models, it is quite intuitive to adjust the procedure to a specific problem. If,
for example, some functions are already known and given by parametric models, a semi-
parametric method can be set up simply by replacing the smoothers of these functions with their
corresponding parameter estimation algorithms.

The remainder of the paper is structured as follows: In Section 2.1, smoothing of a single
function is described putting most attention to smoothing splines. The problem of selecting the
optimal smoothing parameter is discussed in Section 2.2. Generalizing these considerations to the
multi-dimensional additive model, the method of backfitting is described in Section 2.3 and finally
applied on a mechanical system to identify the restoring force of a shock absorber in Section 3.

2. Estimation of additive models

2.1. Linear smoothers and smoothing splines

Consider the simple one-dimensional model

y ¼ f ðxÞ þ e; ð2Þ

where e is a normally distributed error which is independent of x; and the function f ðxÞ is assumed
to be unknown. To estimate f ðxÞ from observed data, the data has to be smoothed to remove the
wiggliness which is induced by the error. There are numerous methods of smoothing which are
classified by linear and non-linear smoothers. The smoothers chosen here are always linear which
is motivated by the fact that confidence bands can be calculated and that there are certain
conditions in which backfitting converges, in contrast to non-linear smoothers, where there are no
general convergence conditions. Linear smoothers are mapping the data points linearly to the
corresponding estimated function values, or more formally: let y ¼ ðy1;y; yNÞ

t be the data at the
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so-called design points x ¼ ðx1;y;xNÞ
t (ð�Þt being the transposition), then a function estimate

#f ¼ ð #f1;y; #fNÞ
t at x is

#f ¼ Sy; ð3Þ

where S is the N � N hat-matrix. A smoother is said to be non-linear if there does not exist a hat-
matrix S such that Eq. (3) is satisfied.

A prominent method for estimating functions is the kernel method. Here, a predefined kernel
function KhðxÞ determines the weighting of adjacent points. The bandwidth h of the kernel
function defines the amount of smoothing by widening or narrowing the shape of Kh: The so-
called Nadaraya–Watson estimator [8,9]

#fðxÞ ¼

PN
j¼1 Khðx � xjÞyjPN

j¼1 Khðx � xjÞ
; ð4Þ

is then an estimate for the unknown function f ðxÞ: This smoother is linear because

Sij ¼
Khðxi � xjÞPN

k¼1 Khðxi � xkÞ

is the corresponding hat-matrix. In order to obtain a consistent estimator, in which the bias and
the variance asymptotically vanish, the choice of the kernel and the scaling behavior of h with
respect to the amount of data N is restricted. These conditions and some mathematical details are
discussed in Ref. [10]. If the kernel has no finite support, Eq. (4) is an OðN2Þ computation time
problem, which one usually wants to avoid. Therefore, kernel functions with finite support are
commonly taken into account. Beside computation, the main disadvantage of kernel smoothers is
the treatment of the boundary which is in the most cases drastically biased.

For these reasons, smoothing splines are used as an alternative. By assuming that the unknown
function in Eq. (2) is at least twice continuously differentiable, an additional term is added to the
usual least-squares functional which penalizes the roughness of the estimate. Hence, the complete
functional

LðgÞ ¼
XN

i¼1

ðyi � gðxiÞÞ
2

s2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
least-squares

þ a
Z

d2gðxÞ
dx2

	 
2
dx|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

penalty

; ð5Þ

has to be minimized with respect to g in order to obtain an estimate of the function in Eq. (2). The
smoothing parameter aX0 determines the amount of smoothing, ranging from zero (interpola-
tion) to infinity (linear regression). The observational error s is often unknown, but it can be
absorbed in the smoothing parameter by using *a ¼ as2: Therefore, s ¼ 1 can always be assumed
without loss of generality. The minimization of Eq. (5) within the class of twice continuously
differentiable functions and vanishing second derivative at the boundary leads to natural cubic
smoothing splines. Reinsch showed that #f ¼ arg mingfLðgÞg are piecewise cubic polynomials
which are fitting together, such that the second derivative is continuous at the joints. An algorithm
to calculate the parameters of these polynomials which takes only OðNÞ computation time is given
in Refs. [5,11].
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Like all linear smoothers, these splines can be regarded as kernel smoothers having a variable
shape in some way. Silverman [12] gave an approximative kernel function for natural cubic splines
and calculated the relation between the smoothing parameter a and the local bandwidth of the
equivalent kernel. In comparing the kernel method with splines, the bias at the boundary is
considerably reduced. Splines are very economic to store, since they are fully characterized by
their value at the design points and the second derivative. Interpolation is possible by evaluating
the spline function at the desired point. The disadvantages of smoothing splines are due to the
assumptions that the function has to be twice continuously differentiable and the error model is
Gaussian; spline smoothing will therefore fail if these conditions are violated. An overview of
some other linear smoothers and their comparison are given in Refs. [3,4].

2.2. Estimating the optimal smoothing parameter

Suppose the function in Eq. (2) is known and let #fa be an estimate of f ; depending on the
smoothing parameter a: Then, the mean-squared error ðMSEÞ

MSEðaÞ ¼ N�1
XN

i¼1

ð #faðxiÞ � f ðxiÞÞ
2; ð6Þ

is an appropriate measure to quantify the goodness of fit in dependence of the smoothing
parameter. Thus, minimizing MSEðaÞ gives the optimal smoothing parameter, but the definition
of the MSE still contains the unknown function f : The idea to save this concept is to estimate
MSE first, and finally a minimization of the estimated MSE score with respect to a yields an

estimate of the optimal smoothing parameter. This can be done by cross-validation: Let #fð�iÞ
a be an

estimated curve where the ith observation is left out in the smoothing procedure. An estimate of
MSE is then given by the cross-validation score

CV ðaÞ ¼ N�1
XN

i¼1

ðyi � #f ð�iÞ
a ðxiÞÞ

2:

As shown in Ref. [5], the cross-validation score is equivalent to

CV ðaÞ ¼ N�1
XN

i¼1

yi � #faðxiÞ
1� SiiðaÞ

 !2

:

Hence #f ð�iÞ
a has not to be calculated explicitly, which reduces the computational costs drastically.

But there is a weak point in this construction: consider a point yi which influences #f very strongly.
Due to the calculation of CV ; leaving out yi will dominate the score. In order to correct this, these
points should be weighted differently. An appropriate weighting leads to the generalized cross-
validation

GCV ðaÞ ¼ N�1
XN

i¼1

1� SiiðaÞ
1� N�1 tr SðaÞ

 �2

ðyi � #f ð�iÞ
a ðxiÞÞ

2;
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or, again eliminating #f ð�iÞ
a ;

GCV ðaÞ ¼
N�1

PN
i¼1ðyi � #faðxiÞÞ

2

ð1 � N�1 tr SðaÞÞ2
: ð7Þ

In these expressions SðaÞ is the hat-matrix for smoothing splines and tr SðaÞ its trace. Generalized
cross-validation was introduced by Craven and Wahba [7]. Since the trace of a matrix is
equivalent to the sum of all eigenvalues, GCV can be calculated very efficiently. If the design
points are equally distributed on the interval ½a; b�; tr SðaÞ can be approximated by

tr SðaÞE2 þ
XN

n¼3

½1 þ C�4aðn� 1:5Þ4��1;

where C ¼ N1=4p�1ðb � aÞ3=4: For a more detailed treatment of an approximative and an exact
calculation of tr S; see Refs. [5,13]. The minimum of the GCV -score can be found by the aid of
standard non-linear minimization routines [14].

2.3. Additive models and the backfitting algorithm

An extension of model (2) to a p-dimensional model are additive models, which are of
the form

y ¼ f1ðx1Þ þ?þ fpðxpÞ þ e: ð8Þ

The functions f1;y; fp are unknown and the error e is still assumed to be normally distributed and
independent of x1;y; xp: Let y ¼ ðy1;y; yNÞ

t and xj ¼ ðxj;1;y; xj;NÞ
t ð j ¼ 1;y; pÞ be the data of

an additive model. By posing the twice differentiability of the unknown functions, the penalized
least-squares functional

Lpðg1;y; gpÞ ¼
XN

i¼1

ðyi � g1ðx1;iÞy� gpðxp;iÞÞ
2

s2
þ
Xp

j¼1

aj

Z
d2gjðxjÞ

dx2
j

" #2

dxj

can now easily be formulated. Here, s is again the observation error and ajX0 ðj ¼ 1;y; pÞ is
the smoothing parameter for each function. An estimate for the unknown functions is thus
the minimum of Lp; but a direct minimization is quite clumsy and the optimal choice of
the smoothing parameters is a difficult task. Fortunately, there is an iterative solution by the
calculation of partial residuals for each function. The new function estimates are provided by
stepwise smoothing of the partial residuals and the solution of minfLpðg1;y; gpÞg is obtained by
cycling through the functions until the least-squares functional does not change. The algorithm of
this procedure, called backfitting, is as follows:

1. Initialization of #f1;y; #fp (zero-function is appropriate).
2. Calculation of partial residuals: *yk; j ¼ yj �

P
rak

#frðxr; jÞ for all j ¼ 1;y;N; smoothing of *yk ¼
ð *yk;1;y; *yk;NÞ

t and replacing #fk:
Generalized cross-validation can be implemented at this point to find the optimal ak:
Cycle smoothing procedure until every k ¼ 1;y; p has been smoothed.

3. Repeat (2) until the least-squares functional does not change.
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The estimate of the function fk is then #fk: Convergence of this backfitting algorithm is assured if
smoothing splines with fixed smoothing parameters are used in step (2) [3,4]. If generalized cross-
validation is performed in every smoothing step, the convergence is not proven because the
smoothing parameter depends non-linearly on the data which leads to non-linear smoothers.
Nevertheless, using generalized cross-validation until the smoothing parameters and the least-
squares functional do hardly change any more and switching to smoothing with fixed parameters
can handle this problem.

Pointwise confidence bounds and effective degrees of freedom can be obtained using techniques
similar to regression analysis [4].

3. Application

3.1. The data

The suggested method is applied on a mechanical system to identify the non-linear restoring
force of helical wire rope isolators. The experiment was proposed by VTT Technical Research
Centre of Finland within the framework of COST (European Cooperation in the Field of
Scientific and Technical Research) [15]. It consists of a bottom plate, a top plate, and the wire rope
isolators. These wire rope isolators are mounted between the top and the bottom plate. The
bottom plate is excited by an electro-dynamic shaker and the top plate is the load for the isolators.
A schematic configuration of this experiment is given in Fig. 1.

Measured are the acceleration .x1 of the bottom plate, the acceleration .x2 of the top plate, and
the displacement x ¼ x2 � x1 between the upper and the lower plate. The behavior of the isolators
are recorded under several experimental conditions. The load mass m2 is either 2:2 or 5:8 kg and
there are two kinds of excitation: harmonic and white noise. The amplitude and frequency was
varied for the harmonic excitation and different excitation levels were chosen for the random
excitation.

Let y ¼ m2 .x2 be the inertial force of the upper plate and ’x be the relative velocity between the
two plates. Plotting y against x exhibits a hysteresis (Fig. 2, right column), which is smeared out in
the case of white noise excitation (Fig. 2b). It is therefore likely to find a non-linear restoring force
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and a non-vanishing friction component. With these variables,

y þ f ðx; ’xÞ ¼ 0 ð9Þ

is the equation of motion of the upper plate. It is further assumed that the unknown function f is
additive. Hence, f ðx; ’xÞ ¼ f1ðxÞ þ f2ð ’xÞ; where f1 is the stiffness force and f2 is a damping term. A
possible coupling term f3ðx ’xÞ will also be studied in the following.

In the case of white noise excitation, Kerschen et al. [16,17] proposed a model for the system.
This model successfully explains the data. Therefore, only the harmonic excitation is considered in
the following analysis.

3.2. Non-parametric analysis

Since the velocity ’x was not measured, it has to be estimated by numerical differentiation of the
displacement x which is very sensitive to noise. For sufficiently large amplitudes of the excitation
force, the observational noise is negligibly small, such that a high accuracy of ’x was achieved.

Fig. 3 shows the results of the analysis under different experimental conditions. In all cases, the
restoring force and the damping are non-linear. The major difference is a change of the non-
linearity with respect to symmetry. Whereas for the small load (Figs. 3(a) and (b)) both the
restoring force and the friction component are almost point-symmetric, this property is lost for
the larger load (Figs. 3(c) and (d)). This may be explained by a geometric distortion of the wire
rope isolators towards a more elliptic shape for negative displacements (squeezing) and towards a
more circular shape for positive displacements.
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Fig. 2. Segment of the measured time series (left) and their hysteresis (right). (a) Sine excitation with load mass 2:2 kg;
frequency 120 Hz; amplitude 3 V and (b) random excitation with load mass 2:2 kg; amplitude 4 V rms:
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The fitted model can be used for predictions, namely the measured displacement and the
velocity are inserted into the corresponding function estimates in order to predict the
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Fig. 3. Estimated restoring force f1 and friction component f2 at frequency n; load mass m; and excitation amplitude U :
(a) n ¼ 120 Hz; m ¼ 2:2 kg; U ¼ 3 V; (b) n ¼ 120 Hz; m ¼ 2:2 kg; U ¼ 10 V; (c) n ¼ 60 Hz; m ¼ 5:8 kg; U ¼ 1 V;
(d) n ¼ 60 Hz; m ¼ 5:8 kg; U ¼ 1:5 V: Dots are indicating the partial residuals of the functions in the first two columns.

A comparison between a model-based simulation and the data is shown in the third column.
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observable y: These predictions are in good accordance with the data (Fig. 3, third column). The
visual inspection of these plots are suggesting an almost perfect fit, but to give a more objective
inspection of the model the residuals (the differences between the predictions and the
measurements) were analyzed in more detail.

Estimating the power spectra of the data and the residuals (Fig. 4) reveals approximately flat
spectra for the 120 Hz excitation (Fig. 4(a)). In case of the 60 Hz excitation (Fig. 4(b)) a small
contribution of the first higher harmonics is present. A first explanation of the presence of the first
higher harmonics might be the presence of a coupling between the variables. To study the effect of
coupling, an additional function depending on x ’x was added to the model. The same analysis with
the extended model shows no further improvement which is exemplarily displayed in Fig. 5.
Therefore, coupling between the two variables does not play a significant role in this system. A
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Fig. 4. Normalized spectra of the data (solid line) and the model residuals (dashed line) at (a) n ¼ 120 Hz; m ¼ 2:2 kg;
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second possible explanation is the presence of noisy design points which cannot be explained by
the model. Nevertheless, most of the system features are captured by the identified models.

Finally, keeping the load mass fixed and varying the amplitude, one would expect that the
functions do not differ in their overlapping part. A direct comparison of Figs. 3(a) and (b) shows
different structural behavior (Fig. 6, full vs. dashed line). Rescaling the force of Fig. 3(a) by 0:55
and doing the same comparison yields a perfect match (Fig. 6, crosses). Therefore, within
statistical variation of the function estimates, these functions do not differ if the force is rescaled.
The necessity of rescaling is probably due to a change of amplification during the experiments in
order to prevent amplifier saturation.

4. Discussion

A data adaptive method for the identification of non-linear additive models is proposed and
applied to estimate functions in ordinary differential equations. If the model consists of only one
unknown function, it can be estimated by smoothing the data. A criterion for selecting the
optimal smoothing parameter can be formulated and efficiently computed if splines are used.
More generally, having an additive model with more than one unknown component, the
suggested function estimation procedure is the iterative backfitting algorithm.

The noise of the observable evaluated at the design points is always assumed to be Gaussian.
But in contrast, the design points are considered as being free from any observational noise.
Therefore, noisy design points can induce biased function estimates. For a too small signal-to-
noise ratio this so-called errors-in-variables problem may become crucial. However, in such a case
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non-parametric methods still can be used as explorative tools to find initial guesses for parametric
models which then can be refined in a subsequent parametric estimation step. For example, the
parameters in ordinary differential equations can often be estimated taking the errors-in-variables
problem into account. Such a two-step strategy has been successfully applied in Refs. [18,19].

If all conditions, i.e., additivity, normally distributed observations and high accuracy of the
design points are fulfilled, the proposed method allows a data driven model identification which
also is numerically efficient.
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